
BUILDING

Z O R B U S
ONE BRICK AT A TIME

updated

20-Oct-2022

Contents
Foreword...2
General stuff...3

Using dice notation for various things...3
External data files..4
Tags..5

Dungeon building...7
The algorithm...7

Marks..8
Area types...10
Area list...10

Dungeon post-processing...11
Vault Editor..12
Adding content to dungeon areas...13

Content descriptions..13
Choosing an area for the content...14
Adding content stuff..14

Being emotions...19
Interactive dialogue..20
Debugging the game...21
Miscellaneous external tools..24

1

Foreword
This ”book” documents various development related things of the roguelike game Zorbus.

There’s no code in this book, the game is closed source, and there’s no easy way for players to edit
or modify it, but still, other hobby developers might find the methods and other stuff documented
here interesting.

This was meant to be more comprehensive, sort of closure to the game project, but I just don’t have
the time nor interest for more than this at the moment. I might however update this in the future.

Zorbus dev.

I can be contacted at joonas@zorbus.net.

The game can be found at www.zorbus.net.

Updates to this book can be found at building.zorbus.net.

2

http://building.zorbus.net/
http://www.zorbus.net/
mailto:joonas@zorbus.net

General stuff

Using dice notation for various things
The game uses tabletop RPG dice notation to represent numeric ranges for weapon damage, effect
amounts, duration, and many other things. If you’re not familiar with it, and want to know more,
check this Wikipedia article: https://en.wikipedia.org/wiki/Dice_notation.

I’ve extended the basic notation to represent damage elements (blunt, pierce, slash, cold, fire, etc.),
and to use being statististics (experience level, skill ranks, etc.), and dungeon statistics (dungeon
level) as modifiers.

Elemental damage

fire: 3d8 | per_magic: 1

= fire damage 3d8 + 1 per every point in Magic-skill

Elemental damage with multiple elements

pierce: 2d5, cold: 2d5 | per_magic: 1/2

= pierce damage 2d5 + cold damage 2d5 + 1 per every 2 points in Magic-skill

Damage with modifiers against being type

blunt: 1d8, against: undead, against_hit: 2, against_multiplier: 2

= blunt damage 1d8 + extra +2 to hit and 2 x damage against undead

Percentual chance to create specific loot in a treasure room

10 | per_dungeon_level: 3

= 10 + 3 per dungeon level

3

https://en.wikipedia.org/wiki/Dice_notation

External data files
All game data is in 5 external text files:

• Levels Dungeon structure, every dungeon level has its own entry
• Contents Room contents
• Beings Being statistics, emotion- and fear-presets, descriptions and dialogue
• Items Item statistics and descriptions
• Talents Talent statistics and descriptions

There’s also an external binary data file for vaults (prefabricated areas, drawn with an external
editor).

Each entry has an identifier with a prefix (”le_” for levels, ”co_” for contents, and so on).

I created a simple editor to help editing the files. When you open the editor, all files are
automatically opened. Entry identifiers are listed on the left, and you can quickly jump to a wanted
entry via a jump list that can be filtered by writing a keyword.

The editor works like a compiler. When you press F9, the text files are parsed, syntax checked, and
packed into a single binary datafile. If an error is found, the editor jumps to the erroneous file and
line.

4

Tags
Tags in Zorbus are used to group data entries. Following tags are used:

• Theme groups contents
• Encounter groups beings
• Loot groups items
• Hazard groups traps
• Feature groups talents

Like data entries, these also have a prefix (”th_” for theme, ”re_” for (random) encounter, and so
on).

Example of theme-tag

Part of a content entry:

content_id............ co_lair_kobold
theme_tags............ th_basic_01
max_per_level......... 1
max_per_game.......... 1
note.................. Kobold lair

This content belongs to the th_basic_01 theme. Several other contents also have the tag.

In a level entry you could now have:

themes................ th_basic_01 = 2d4+5

Which would set 2d4+5 contents onto the dungeon level, chosen from all contents with th_basic_01
tag.

5

Example of encounter-tag

Part of a being entry:

being_id.............. be_ape
|
unidentified_name..... ape
introduced_name....... ape
|
encounter_tags........ re_animals, re_apes, re_01, re_02

This being has the re_animals, re_apes, re_01 and re_02 tags. Several other animals also have the
re_animals tag.

In a content entry you could now have:

stuff................. re_animals, amount = 1d3+3

The re_01, re_02 … re_xx tags are mostly used to group all beings that can be randomly placed on
the level. On the first dungeon level data entry you could have:

stuff................. re_01, amount = 1d10+20

Which would randomly create 1d10+20 beings, chosen from all beings with the re_01 tag, and
place them randomly on the level.

Example of loot-tag

Part of an item entry:

item_id............... it_potion_healing
name.................. Potion of Healing
|
type.................. device, potion
|
loot_tags............. lo_potions, lo_healing_potions
loot_amount........... 1
loot_min_dungeon...... 1
loot_max_dungeon...... 3

This item has the lo_potions and lo_healing_potions tags. Items Potion of Extra Healing and
Potion of Superior Healing also have the lo_healing_potions tag.

In a content entry you could now have:

stuff................. lo_healing_potions, amount = 1d2

Which would create 1d2 items, randomly chosen from all items that have the lo_healing_potions
tag. Note the loot_min_dungeon and loot_max_dungeon values. These control the dungeon level
range where this item can be created. In this case, Potion of Healing will only be created on the first
three dungeon levels, and after that it will be ignored when creating loot with the
lo_healing_potions tag.

6

Dungeon building
The dungeon generator of the game has been released as a separate Windows tool, available at
dungeon.zorbus.net. There's a step-function which adds one area at a time if you're interested in
seeing how the algorithm works.

The algorithm
The dungeon building algorithm used in Zorbus is based on an article written by Mike Anderson,
posted to Darren Hebden’s Roguelike News website back in 1999. The article can be now found at
RogueBasin.

The algorithm is very simple, easy to implement, and ensures that every area is reachable. The
algorithm makes it easy to control the amount of different area types, especially corridors.

Here’s the algorithm how Mike explains it:

In this algorithm a "feature" is taken to mean any kind of map component
e.g. large room, small room, corridor, circular arena, vault etc.

1. Fill the whole map with solid earth
2. Dig out a single room in the centre of the map
3. Pick a wall of any room
4. Decide upon a new feature to build
5. See if there is room to add the new feature through the chosen wall
6. If yes, continue. If no, go back to step 3
7. Add the feature through the chosen wall
8. Go back to step 3, until the dungeon is complete

7

http://www.roguebasin.com/index.php?title=Dungeon-Building_Algorithm
https://web.archive.org/web/20011204172037/http://www.skoardy.demon.co.uk/rlnews/
http://dungeon.zorbus.net/

Marks

I do step 3 of the algorithm a bit differently. After adding a new area to the map, I add new area
spawning points to all sides of the area. In reality, the marks are added to a list, but for debugging
and visualization purposes I also set the marks to a debug layer of the map. When deciding where to
build next, the generator randomly picks a point from the list.

I call these connection points ”marks”.

For example, when you add a room, add a connection point to all sides of the area excluding the
source point side (so, a total of 4 points if it's the first area of the dungeon, 3 otherwise).

The exact mark location is randomly chosen. I won’t add marks to points too close to map edges.

Marks for prefabs are set with an external tool, the Vault Editor.

Marks have these properties:

• X- and Y-coordinate

• Direction (1 - 4 = N, E, S, W)

• Master area type

• Force area type (optional, force the next area to be of certain type)

• Corridor end (set if this point is the dead end of a corridor)

Green blocks are marks. Brown blocks are doors.

8

9

Area types

The dungeon generator has the following area types:

• Corridor

• Room

• Circular

• Ellipse

• Polygon

• Tunnel

• Cave

• Special

• Vault

For corridors, there’s a chance that side corridors are automatically added making it a crossroads.

Polygons are shaped from connecting randomly placed points.

Caves are natural formations. Tunnels are also natural formations, but more longish, with a chance
that a cave is added at the end point. Tunnels and caves are created with the Drunkard Walk
algorithm.

Specials are prefabs, mostly hallways, crossroads, dividers, etc., mostly not used for content. The
curved corridors you seen in the game maps are specials.

Vaults are prefabs, thronerooms etc. for special content.

Specials and vaults are created with an external tool, the Vault Editor. Prefabs are rotated towards
the direction they will be drawn at. Vault Editor precalculates the prefab dimensions so that prefabs
that would go over the map edges can be skipped when randomly picking from the alternatives.
Prefabs are grouped into ”rectangular”, ”curvy”, ”prison”, etc. groups. Each level entry has a list of
prefab groups that the level uses.

Each level entry has a weighted list of chances per area type. The sequential value is a percentual
chance that a same type of area can be spawned from an area.

area_chances.......... co = 014%, ro = 033%, ci = 006%, el = 005%, po = 006%, tu = 005%, ca = 008%, sp = 017%, va = 004%
|
area_sequential....... co = 050%, ro = 020%, ci = 010%, el = 010%, po = 020%, tu = 050%, ca = 050%, sp = 100%, va = 000%
area_max_amounts...... co = 0, ro = 0, ci = 5, el = 5, po = 5, tu = 4, ca = 4, sp = 15, va = 0

Area list

Each added area is stored to an area list with its area type, coordinates, size, number of exits, etc.
info. This list is then used when choosing areas for content and many other things.

10

http://pcg.wikidot.com/pcg-algorithm:drunkard-walk

Dungeon post-processing
Several methods are used to post-process the map:

• Corridor dead ends are terminated by creating areas at the end of the corridors, or the
corridors are extended if they can breach another area. If a corridor with a single entry point
can not be terminated with these methods, that entry point is turned into a secret door, and
later ”treasure corridor” content is applied to the area.

• Wider corridors are extended if there’s an area that can be breached.

• Corridors between areas are added to connect them.

• Chance of areas being merged by removing shared walls.

• Small areas (small rooms and small prefabs) are added at marks in cave- and vault-areas.

• If there are common walls between areas, floor / doors / secret doors are added to them.

• Some doors are changed to secret doors. Secret doors are not created at the end of corridors
as they seem too obvious.

After post-processing, the number of exits (no-door exits, doors, locked doors, secret doors) in each
area is calculated and stored in the area list. This information is later used when adding content to
the areas.

Post-processed map. Red tiles are walls turned into floor. Yellow tiles are secret doors.

11

Vault Editor
Prefabs are created with an external tool, the Vault Editor.

If you are a game developer, you might be interested in zorbus_vaults.zip. It's a collection of all the
prefab areas used in the generator, in plain ASCII-format, free to use (CC0 Creative Commons
License).

The Vault Editor has basic drawing and rotating capabilities. Bitmap images and single truetype
font glyphs can be imported to be used as a base for drawing.

Prefabs. Arrows on blue background are marks. Red frame marks the starting point. Numbers with
brown background are furniture. Grids with green background are spots and zones, where content
stuff can be placed.

12

http://www.zorbus.net/bts/zorbus_vaults.zip

Adding content to dungeon areas
Contents are described in an external text file. Most contents are tagged with one or several theme
tags, for example th_basic_01 or th_rare_01.

In a level entry you could have:

themes................ th_basic_01 = 2d4+5, th_rare_01 = 1d10-9

Which would set 2d4+5 contents onto the dungeon level, chosen from all contents with th_basic_01
tag, and 1d10-9 contents chosen from all contents with th_rare_01 tag.

You can also force contents:

force_contents........ co_ambush, co_prison

Content descriptions

Content descriptions started as simple lists of stuff I wanted to be created into an area, but later on
more keywords and control were added.

Contents are almost never tied to certain area type or any single prefab. Instead, the content
description has a list of wanted area types with requirements.

content_id............ co_gnoll_barracks
theme_tags............ th_basic_03, th_basic_04, th_basic_05_06
|
area.................. room, min_size = 90, min_exits = 1, max_exits = 4
area.................. circular, min_size = 133, min_exits = 1, max_exits = 4
area.................. ellipse, min_size = 133, min_exits = 1, max_exits = 4
area.................. polygon, min_size = 150, min_exits = 1, max_exits = 4
area.................. vault, min_size = 150, min_exits = 1, max_exits = 4

This content wants a room area type of at least size 90, with a minimum of 1 exit, and maximum of
4 exits. The content generator makes a list of such areas that haven’t yet had content added to them,
randomly selects one, then generates the wanted stuff into it. If no such area exists, the generator
then tries the next area type in the list, circular areas in this case.

You can give a percentual chance that the order of the wanted areas list is scrambled.

scramble_areas........ 30

These control max amounts of this content per level / per run. (0 is unlimited)

max_per_level......... 2
max_per_game.......... 0

With enchantment_boost you can boost the chance that the armor and weapons created in this
content are enchanted (plusses or branded).

enchantment_boost..... 5

13

Choosing an area for the content

In the map generation phase the generator added each area to an area list with its area type,
coordinates, size, exits, and so on. This is where the area list gets very useful.

The content generator makes a list of all areas on the level that fill the requirements of the content,
then one area from the list is randomly picked. After the content is added, the area is marked as
used.

Adding content stuff

Stuff is things that are created into the selected area. Stuff can be furniture, floor symbols, beings,
items, loot (selected from a group of items with the declared loot-tag), traps, hazards (selected from
a group of traps with the declared hazard-tag), decorative splashes (bones, blood, litter, etc.).

Stuff placement can be set (center, top wall, etc.), otherwise it’s random.

stuff................. fu_table, placement = center
stuff................. fu_chair, placement = center, chance = 50

stuff................. lo_bones, placement = full_area, amount = 1d3+1

For prefabs, you can set a wanted zone, otherwise the main zone is used. If a prefab is selected as
the target area, the code that checks if an area is suitable for this content also checks that the needed
zones exist in the prefab. For example, if the content needs a prefab with prison cells, then only
those kind of areas areas are considered suitable.

stuff................. be_jermlaine_ambusher, zone = vz_ambush_1
stuff................. be_rat_giant_ambusher, zone = vz_ambush_2

stuff................. tag_prisoners, zone = vz_cell_1, chance = 80
stuff................. tag_prisoners, zone = vz_cell_2, chance = 80

Selection keywords form a list from which one is randomly picked and created.

stuff................. sy_fangs_5x5, selection_start
stuff................. sy_pentacle_5x5, selection
stuff................. sy_pentagram_5x5, selection
stuff................. sy_sun_5x5, selection
stuff................. sy_sunrise_5x5, selection_end

Stuff can be also be listed in level entries. A random area is picked from all areas on the level.

stuff................. re_01, amount = 20+2d5, min_exits = 1, no_beings
stuff................. ha_traps_1, amount = 1d3, clear_area_index
stuff................. it_bones_humanoid, placement = full_area, amount = 5+3d5

14

Content example: Gnoll barracks

content_id............ co_gnoll_barracks
theme_tags............ th_basic_03, th_basic_04, th_basic_05_06
max_per_level......... 1
max_per_game.......... 1
properties............ beings_to_campers
note.................. Gnoll barracks
|
scan.................. from_end
scramble_areas........ 100
area.................. room, min_size = 90, min_exits = 1, max_exits = 4
area.................. circular, min_size = 133, min_exits = 1, max_exits = 4
area.................. ellipse, min_size = 133, min_exits = 1, max_exits = 4
area.................. polygon, min_size = 150, min_exits = 1, max_exits = 4
|
light................. 100
dim_lights............ 0
chests................ lock = 20
floor_pattern......... 0
enchantment_boost..... 0
|
stuff................. sy_crushed_5x5
|
stuff................. fu_table, placement = center
stuff................. fu_chair, placement = center
stuff................. fu_chair, placement = center, chance = 50
stuff................. fu_bed
stuff................. fu_bed
stuff................. fu_bed, chance = 50
stuff................. fu_chest, chance = 90
stuff................. fu_barrel, chance = 50
stuff................. fu_barrel, chance = 50
stuff................. lo_armor_medium, chance = 40, amount = 1d2
stuff................. lo_common, amount = 1d3+3
stuff................. lo_potions, amount = 1d2, chance = 30
stuff................. lo_potions, amount = 1d2, put_on_floor = 100
stuff................. lo_trapkits, chance = (15 | per_dungeon_level: 1)
stuff................. lo_utility_potions, chance = 25
stuff................. it_coin, amount = 20+2d20
stuff................. sp_litter, placement = full_area, amount = 1d5+3
|
stuff................. be_gnoll_leader, amount = (0 | per_dungeon_level: 1/4)
stuff................. be_gnoll, amount = (1d2 | per_dungeon_level: 1/2)
|
stuff................. tag_traps, amount = 1d3+1, chance = 30, trap_containers
|
sound................. stinger

15

Content example: Hidden dead end treasure corridor

content_id............ co_treasure_corridor
theme_tags............ th_secret_areas_01, th_secret_areas_02, th_secret_areas_03
max_per_level......... 0
max_per_game.......... 0
properties............ beings_to_campers, no_blink_into
|
scan.................. from_end
scramble_areas........ 0
area.................. corridor, max_exits = 0, min_size = 9
|
light................. 0
dim_lights............ 100
chests................ -
floor_pattern......... 0
enchantment_boost..... 5
|
stuff................. fu_chest
stuff................. lo_armor_heavy, chance = (10 | per_dungeon_level: 3)
stuff................. lo_armor_medium, if_previous_failed
stuff................. lo_common, amount = 3+1d5, chance = 60
stuff................. it_coin, amount = (5+3d10 | per_dungeon_level: 10)
stuff................. lo_potions, chance = (20 | per_dungeon_level: 1)
stuff................. lo_ammunition, chance = 60
stuff................. lo_rare_ammunition, chance = (20 | per_dungeon_level: 2)
stuff................. lo_magic_devices, chance = (5 | per_dungeon_level: 3)
stuff................. lo_rare_melee, chance = (0 | per_dungeon_level: 1)
stuff................. lo_rare_ranged, chance = (0 | per_dungeon_level: 1)
stuff................. lo_scrolls, chance = (10 | per_dungeon_level: 2)
stuff................. lo_books, chance = 10
stuff................. it_coin, amount = 30+2d30
stuff................. tag_traps, amount = 1d3-1
stuff................. tag_traps, chance = 80, trap_containers
|
sound................. stinger

Note how the area requirement is a corridor with max 0 exits, meaning that this content is only
created in corridors that are behind a secret door without further exits. This is a nice way to add
something to dead end corridors that the dungeon post-processing was unable to terminate.

16

Content example: Ambush

content_id............ co_ambush
theme_tags............ th_specials_01, th_specials_02
max_per_level......... 1
max_per_game.......... 1
properties............ beings_to_campers, beings_always_awake
|
scan.................. from_end
scramble_areas........ 0
area.................. special
|
light................. 0
dim_lights............ 0
dim_lights............ 0
chests................ -
floor_pattern......... 0
enchantment_boost..... 0
|
stuff................. tr_ambush, amount = 8+1d4, trap_difficulty = 100
stuff................. ls = le_kobold, le = le_giant_2, tr_slime, amount = 1d2+1
|
stuff................. be_jermlaine_ambusher, zone = vz_ambush_1
stuff................. be_rat_giant_ambusher, zone = vz_ambush_1
stuff................. be_jermlaine_ambusher, zone = vz_ambush_2
stuff................. be_rat_giant_ambusher, zone = vz_ambush_2, chance = 30
stuff................. be_jermlaine_ambusher, zone = vz_ambush_3, chance = 80
stuff................. be_rat_giant_ambusher, zone = vz_ambush_3, chance = 60
stuff................. be_jermlaine_ambusher, zone = vz_ambush_4, chance = 70
stuff................. be_rat_giant_ambusher, zone = vz_ambush_4, chance = 50
|
stuff................. sp_litter, placement = full_area, amount = 1d5+3
stuff................. sp_remains_pool, placement = full_area, amount = 2d4+5
stuff................. lo_bones, placement = full_area, amount = 1d3+1

The area layout is a prefab, created with the Vault Editor. The green zone in the middle is where the
ambush traps are placed. Walking on one of these traps triggers the ambush, meaning that the walls
marked with brown background and number 37 will vanish, and the rest of the ambush traps in the
area are removed. Beings waiting in ambush are placed in special ambush zones.

Note that this content is not tied to any single prefab, but any prefab that fills the requirements, in
this case the four ambush zones where the ambushers will be placed. The game has currently over
60 different prefab maps for ambushes, and this content can be placed in any of them.

17

Content example: Prison

content_id............ co_prison
theme_tags............ th_specials_04, th_specials_05_06
max_per_level......... 1
max_per_game.......... 1
properties............ beings_to_campers
note.................. Prison
|
scan.................. from_end
scramble_areas........ 0
area.................. vault, min_exits = 0
|
light................. 100
dim_lights............ 0
chests................ -
floor_pattern......... 50
enchantment_boost..... 0
|
stuff................. fu_table, placement = center
stuff................. fu_chair, placement = center
stuff................. fu_chair, placement = center, chance = 60
stuff................. fu_chest, chance = 70
|
stuff................. lo_common, amount = 1d4
stuff................. lo_trapkits, chance = (15 | per_dungeon_level: 1)
|
stuff................. lo_bones, placement = full_area, amount = 1d4+3, put_on_floor = 100
stuff................. sp_blood_pool, placement = full_area, amount = 2d3+3
stuff................. sp_litter, placement = full_area, amount = 1d8+5
|
stuff................. be_human_bandit_leader, chance = (40 | per_dungeon_level: 10)
stuff................. be_human_bandit, amount = (1d2 | per_dungeon_level: 1/2)
|
stuff................. tag_prisoners, zone = vz_cell_1, chance = 80
stuff................. tag_prisoners, zone = vz_cell_2, chance = 80
stuff................. tag_prisoners, zone = vz_cell_3, chance = 80
stuff................. tag_prisoners, zone = vz_cell_4, chance = 80
stuff................. tag_prisoners, zone = vz_cell_5, chance = 80
stuff................. tag_prisoners, zone = vz_cell_6, chance = 80
stuff................. tag_prisoners, zone = vz_cell_7, chance = 80
stuff................. tag_prisoners, zone = vz_cell_8, chance = 80

Note that this content is not tied to any single prefab, but any prefab that fills the requirements, in
this case the eight prison cell zones where the prisoners will be placed. The game has currently 30
different prefab maps for prisons, and this content can be placed in any of them.

18

Being emotions
The emotion system used in the game was inspired by an article, ”Need driven AI”, written by
Björn Bergström, available at RogueBasin.

Beings have emotion- and fear-values against other beings set in the Beings-datafile. Being type is
used as an identifier. Type can for example be race, alignment, faction, same race, all except same
race, and so on.

being_id.............. be_githyanki_warrior
|
unidentified_name..... githyanki warrior
introduced_name....... githyanki warrior
|
type.................. humanoid, githyanki, male, medium, evil
|
emotions.............. same_race = fanatic_love,
 mindflayer = fanatic_hate,
 good = fanatic_hate,
 player_and_companions = fanatic_hate

Certain factions and being types hate each other, for example demons and devils are always fighting
each other in a neverending Blood War. This brings more life into the dungeon as not every creature
is after the player character.

Some beings get gradually more hostile against other beings that stay on their birth area, or just stay
too long near them.

being_id.............. be_bear_brown
|
unidentified_name..... brown bear
introduced_name....... brown bear
|
type.................. animal, bear, large, neutral,
 hostile_on_home_trespassing, gets_hostile
|
emotions.............. bear = fanatic_love,
 all_except_same_race = mild_hate

Being’s fear-value against other being gets increased when the being gets damaged, its master is
killed, something kills a large amount of its friends in a single round, and so on. Depending on the
being’s morale-value, it might flee, go berserk, or just ignore the fear. Most beings get a morale
boost from superiority.

The emotion- and fear-tables also store the target being’s last seen location. A fleeing being avoids
that location for a time.

Creatures with positive emotions against each other trade hate-emotions (and at the same time, the
last seen locations of hate targets). Occasionally the player will see and hear these emotion
exchanges in speech bubbles and sound effects.

Goblin A might flee from the player, and when running away it might meet its friend, goblin B, who
then gets the hate-emotion from goblin A with player’s last seen location. If goblin A would have
met more friends, its morale could have been restored so much that it would return at the player’s
last seen location with its friends.

19

http://www.roguebasin.com/index.php/Need_driven_AI

Interactive dialogue
The game has interactive dialogue in that sense that beings react to things happening to them and to
things happening around them. Dialogue is shown with speech bubbles.

Dialogue is grouped to various situations, for example:

• Friendly introduction

• Hostile introduction

• Gets angry

• Kills another being

• Friend is killed

• Flees

• Player is hiding in same area

• Tells friend how much he hates the player

• Friend comments info about player

• Follower springs trap

• Follower sees master spring a trap

• Idle chatter

When a being goes into some state, or sees something happen, the dialogue usually isn’t immediate,
but instead a situation counter is set. The counter is decreased each game round, and the being tries
to say the dialogue while the counter is alive. If the counter goes to zero, the need for dialogue is
forgotten. There are priorities and cooldowns for dialogue types, some are said only once, and since
there are limited amount of visible speech bubbles on the screen, there might not be space for a
bubble.

20

Debugging the game

The developer version of the game places the game window in the upper left corner of the screen.
Below the game window is a full sized debug window with a map of the level and various logs.
The map is updated as beings move around.

With the various hotkeys you can jump to wanted area number or level, save and load the game
state, and so on. The developer version jumps straight into the game without any menus, so
loading the previous state is fast.

Pressing a hotkey brings up a wizard-menu.

You can level up the character to wanted experience
level.

”Complete level” sets the player character to AI control
and explores the whole dungeon level, then returns
control to player.

”Autoplay” autoplays the game in AI control, and starts
again from the start when the last dungeon level is
explored. Very, very useful for debugging and stress
testing the game.

The wizard has various ways to list stuff from the
current level, or to create new stuff.

21

Examine mode shows information of the map tile and being under the cursor. There’s a second
page of being information that lists the being’s emotion- and fear-values.

In this mode you can press S to select a being, then move the cursor to a wanted location, and
place the being there by pressing M. With the previously shown wizard-menu you can create
beings and items. This is very useful for creating a specific debug scenario. Game state can be
saved with Ctrl+S, and loaded with Ctrl+L.

22

Level Statistics tool creates dungeon levels for wanted amount of runs, and calculates the average
amount of created content, beings, items, etc., then listing the total amount and per level amounts.

Average experience per level is also calculated, and from that, the average character level per
dungeon level.

Very useful for getting statistics on various things, adjusting numbers, and also for stress testing
the dungeon generator for possible errors and memory leaks.

23

Miscellaneous external tools
Several external tools were created during development.

Brick & Mortar is a tool for creating wall and floor tiles for games with tile graphics.

Download bm.zip.

24

http://www.zorbus.net/bts/bm.zip

Tile Builder is a tool for building tiles from body parts drawn by David E. Gervais. The body part
images are taken from the work files of his Angband tileset.

Download tb.zip.

25

http://www.zorbus.net/bts/tb.zip
http://pousse.rapiere.free.fr/tome/tome-tiles.htm
http://pousse.rapiere.free.fr/tome/tiles/Work.zip

Symbol Studio for creating floor symbols, both procedurally and from bitmap images.

Explosion & Cloud Creator for procedurally creating various animations, mostly for spell effects.
The rotating pentagram and summoning circle animations were created with this.

26

Tile Studio for editing and previewing the tiles. Can do some basic image manipulation, palette
swapping, and so on.

27

Level Tester has been invaluable in debugging the dungeon generator. Seeds can be used to
reproduce problematic levels.

28

Level Tester in step-mode, adding one area at a time.

The game uses a lot of offset coordinate tables to check things from the map, and to place things
on it. I needed something that could easily output the coordinates of series of offsets, so I created
this offset tool where you can click the wanted grids, and it will create the coordinate array code.

29

The game has over 4000 sound effects, and to get there I went through a ridiculous amount of
sound effects. Windows file explorer was way too clumsy to handle tens of thousands of resource
files, thus Sound Studio was born. Yeah, it’s not pretty, but it gets the job done.

This tool can be operated fully with the keyboard, you can press TAB to switch between the lists
(resources / target folder / target folder contents), and use hotkeys to play, open, and convert files.
There are hotkeys and keyword fields for filtering the resource files and target folders.

Pressing F1 executes command line utility FFmpeg to convert the selected wav-file from the
leftmost list to an ogg-file, placing it in the target folder (middle list), of which contents are listed
in the rightmost list.

Pressing F3 / F4 opens the wav-file in Goldwave / Audacity for editing.

I didn’t want the game to have thousands of files in its release version, so Ctrl+S combines all the
sound files to a giant, single datafile.

30

https://www.audacityteam.org/
https://www.goldwave.com/
https://www.ffmpeg.org/

	Foreword
	General stuff
	Using dice notation for various things
	External data files
	Tags

	Dungeon building
	The algorithm
	Marks
	Area types
	Area list

	Dungeon post-processing
	Vault Editor
	Adding content to dungeon areas
	Content descriptions
	Choosing an area for the content
	Adding content stuff

	Being emotions
	Interactive dialogue
	Debugging the game
	Miscellaneous external tools

